图像处理(3):深度学习之图像分类(垃圾分类案例)

AI垃圾分类

产品描述

如何进行垃圾分类已经成为居民生活的灵魂拷问,然而AI在垃圾分类的应用可以成为居民的得力助手。
针对目前业务需求,我们设计一款APP,来支撑我们的业务需求,主要提供文本,语音,图片分类功能。AI智能垃圾分类主要通过构建基于深度学习技术的图像分类模型,实现垃圾图片类别的精准识别重点处理图片分类问题。
采用深圳市垃圾分类标准,输出该物品属于可回收物、厨余垃圾、有害垃圾和其他垃圾分类。

垃圾分类-数据分析和预处理

  • 整体数据探测
  • 分析数据不同类别分布
  • 分析图片长宽比例分布
  • 切分数据集和验证集
  • 数据可视化展示(可视化工具 pyecharts,seaborn,matplotlib)

代码结构

├── data
│   ├── garbage-classify-for-pytorch
│   │   ├── train
│   │   ├── train.txt
│   │   ├── val
│   │   └── val.txt
│   └── garbage_label.txt
├── analyzer
│   ├── 01 垃圾分类_一级分类 数据分布.ipynb
│   ├── 02 垃圾分类_二级分类 数据分析.ipynb
│   ├── 03 数据加载以及可视化.ipynb
│   ├── 03 数据预处理-缩放&裁剪&标准化.ipynb
│   ├── garbage_label_40 标签生成.ipynb
├── models
│   ├── alexnet.py
│   ├── densenet.py
│   ├── inception.py
│   ├── resnet.py
│   ├── squeezenet.py
│   └── vgg.py
├── facebook
│   ├── app_resnext101_WSL.py
│   ├── facebookresearch_WSL-Images_resnext.ipynb
│   ├── ResNeXt101_pre_trained_model.ipynb
├── checkpoint
│   ├── checkpoint.pth.tar
│   ├── garbage_resnext101_model_9_9547_9588.pth
├── utils
│   ├── eval.py
│   ├── json_utils.py
│   ├── logger.py
│   ├── misc.py
│   └── utils.py
├── args.py
├── model.py
├── transform.py
├── garbage-classification-using-pytorch.py
├── app_garbage.py
  • data: 训练数据和验证数据、标签数据
  • checkpoint: 日志数据、模型文件、训练过程checkpoint中间数据
  • app_garbage.py:在线预测服务
  • garbage-classification-using-pytorch.py:训练模型
  • models:提供各种pre_trained_model ,例如:alexlet、densenet、resnet,resnext等
  • utils:提供各种工具类,例如;重新flask json 格式,日志工具类、效果评估
  • facebook: 提供facebook 分类器神奇的分类预测和数据预处理
  • analyzer: 数据分析和数据预处理模块
  • transform.py:通过pytorch 进行数据预处理
  • model.py: resnext101 模型集成以及调整、模型训练和验证函数封装

resnext101网络架构

  • pre_trained_model resnext101 网络架构原理
  • 基于pytorch 数据处理、resnext101 模型分类预测
  • 在线服务API 接口

垃圾分类-训练

python garbage-classification-using-pytorch.py \
        --model_name resnext101_32x16d \
        --lr 0.001 \
        --optimizer  adam \
        --start_epoch 1 \
        --epochs 10 \
        --num_classes 40
  • model_name 模型名称
  • lr 学习率
  • optimizer 优化器
  • start_epoch 训练过程断点重新训练
  • num_classes 分类个数

垃圾分类-评估

python garbage-classification-using-pytorch.py \
    --model_name resnext101_32x16d \
    --evaluate  \
    --resume checkpoint/checkpoint.pth.tar \
    --num_classes 40 
  • model_name 模型名称
  • evaluate 模型评估
  • resume 指定checkpoint 文件路径,保存模型以及训练过程参数

垃圾分类-在线预测

python app_garbage.py \
    --model_name resnext101_32x16d \
    --resume checkpoint/garbage_resnext101_model_2_1111_4211.pth
  • model_name 模型名称
  • resume 训练模型文件路径
  • 模型预测
    命令行验证和postman 方式验证
    举例说明:命令行模式下预测
    curl -X POST -F file=@cat.jpg http://ip:port/predict

最后,我们从0到1教大家掌握如何进行垃圾分类。通过本学习,让你彻底掌握AI图像分类技术在我们实际工作中的应用。

1. 你是什么垃圾?

在这里插入图片描述

2. 告诉你,你是什么垃圾

在这里插入图片描述

3. 使用它告诉你,你是啥垃圾

在这里插入图片描述

已标记关键词 清除标记
<p> <b><span style="background-color:#FFE500;">【超实用课程内容】</span></b> </p> <ul> <li> <span style="font-size:14px;"><span>深度学习图像处理领域的发</span><span>展过程;</span></span> </li> <li> <span style="font-size:14px;"><span>解析经典的卷积神经网络;</span></span> </li> <li> <span style="font-size:14px;"><span>垃</span><span>圾分类实战。本课程将使用Pytorch深度学习框架进行实战,并在ubuntu系统上</span><span>进行演示,包括:不同标注文件下的数据集读取、编写卷积神经网络、训练垃圾分类数据集、测试训练网络模型、网络可视化、性能评估等。</span></span> </li> </ul> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;background-color:#FFE500;"><b><br /> </b></span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;background-color:#FFE500;"><b>【课程如何观看?】</b></span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;">PC端:<a href="https://edu.csdn.net/course/detail/26277"><span id="__kindeditor_bookmark_start_21__"></span></a><a href="https://edu.csdn.net/course/detail/26295">https://edu.csdn.net/course/detail/26295</a></span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;">移动端:CSDN 学院APP(注意不是CSDN APP哦)</span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <br /> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;background-color:#FFE500;font-size:14px;"><span style="line-height:24px;"><strong>【学员专享增值服务】</strong></span></span> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;font-size:14px;"><b>源码开放</b></span> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;font-size:14px;">课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化</span> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;"><span style="font-size:14px;">下载方式:电脑登录<span style="color:#000000;"><a href="https://edu.csdn.net/course/detail/26277"></a><a href="https://edu.csdn.net/course/detail/26295">https://edu.csdn.net/course/detail/26295</a></span></span><span style="font-size:14px;">,点击右下方</span><span style="line-height:24px;background-color:#CCCCCC;font-size:14px;">课程资料、代码等打包下载</span></span> </p> <p> <br /> </p> <p> <br /> </p>
相关推荐
<p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <span style="color:#E53333;"><strong>【课程介绍】</strong></span>  </p> <p style="text-align:left;">      Pytorch项目实战 垃圾分类 课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下最新话题-垃圾分类问题为实际业务出发点,介绍最前沿的深度学习解决方案。 </p> <p style="text-align:left;">     从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。 </p> <p style="text-align:left;">     课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。 </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程要求】</span></strong> </p> <p style="text-align:left;"> (1)开发环境:python版本:Python3.7+;<span style="color:#E53333;"> torch 版本:1.2.0+; torchvision版本:0.4.0+</span> </p> <p style="text-align:left;"> (2)开发工具:Pycharm; </p> <p style="text-align:left;"> (3)学员基础:需要一定的Python基础,及深度学习基础; </p> <p style="text-align:left;"> (4)学员收货:掌握最新科技图像分类关键技术; </p> <p style="text-align:left;"> (5)学员资料:内含完整程序源码和数据集; </p> <p style="text-align:left;"> (6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码 </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <span style="color:#E53333;"><strong>【课程特色】</strong></span> </p> 阵容强大 <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> 讲师一直从事与一线项目开发,高级算法专家,一直从事于图像、NLP、个性化推荐系统热门技术领域。 </p> <p style="text-align:left;"> 仅跟前沿 </p> <p style="text-align:left;"> 基于当前热门讨论话题:垃圾分类,课程采用学术届和工业届最新前沿技术知识要点。 </p> <p style="text-align:left;"> 实战为先 </p> <p style="text-align:left;"> 根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部署。精心设计工业实战项目 </p> <p style="text-align:left;"> 保障效果 </p> <p style="text-align:left;"> 项目实战方向包含了学术届和工业届最前沿技术要点 </p> <p style="text-align:left;"> 项目包装简历优化 </p> <p style="text-align:left;"> 课程内垃圾分类图像实战项目完成后可以直接优化到简历中 </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程思维导图】</span></strong> </p> <p style="text-align:left;"> <img src="https://img-bss.csdn.net/201912081323318969.png" alt="" /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程实战案例】</span></strong> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <img src="https://img-bss.csdn.net/201912081326184463.png" alt="" /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <br /> </p>
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页